If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905t^2-8.228t=0.65
We move all terms to the left:
4.905t^2-8.228t-(0.65)=0
We add all the numbers together, and all the variables
4.905t^2-8.228t-0.65=0
a = 4.905; b = -8.228; c = -0.65;
Δ = b2-4ac
Δ = -8.2282-4·4.905·(-0.65)
Δ = 80.452984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8.228)-\sqrt{80.452984}}{2*4.905}=\frac{8.228-\sqrt{80.452984}}{9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8.228)+\sqrt{80.452984}}{2*4.905}=\frac{8.228+\sqrt{80.452984}}{9.81} $
| (y/3)*(y/3)=81 | | 1=-(-w+6 | | 8.22+54.8154√9.81=x | | 2(x-60=3x | | 4.905t^2-8.22t+0.65=0 | | (9/y)+(7y/2y)=9y | | 50q^2-81=-9 | | -3(-5y+-7)=96 | | 4r+5=20 | | (4x-18)+78=180 | | 6+3+8k+k=0 | | Y=0.5x^2-3 | | 3u^2+14u+24=0 | | (4x+18)+78=180 | | T=300(d−15)2+20 | | 4x/3=45 | | 8K+3+k+6=0 | | K+3+8k+6=0 | | (2x+31)+(4x-13)+x=180 | | 24+h÷4=10 | | (12x+2)+10x=90 | | (2x+311)+(4x-13)+x=180 | | 8k+3=k+6 | | .75x=-100 | | 2v+2=2 | | (K+3)=(8k+6) | | K+3=8k+6 | | 2x-5+4x-9=40 | | )k+6=8k+3 | | 1.05y+2.31-y-1.2=2y+4.71-3.9 | | -4(-4y+8)=16 | | 3x+10+6x-5+2x+5x+2x-5=360 |